Numerical Investigation of Time-Fractional Phi-Four Equation via Novel Transform
نویسندگان
چکیده
This paper examines two methods for solving the nonlinear fractional Phi-four problem with variable coefficients. One of distinct states Klein–Gordon model yields equation. It is also used to simulate kink and anti-kink solitary wave connections that have recently emerged in biological systems nuclear particle physics. The approaches are being suggested consist Yang transform, homotopy perturbation approach, decomposition derivative as stated by Caputo. advantages proposed techniques their capability combining dominant attaining precise approximate solutions equations. important keep mind can perform better general they need less computational effort than alternative methods, while keeping a high level numerical precision. actual estimated outcomes demonstrated graphs tables be quite similar, demonstrating usefulness approaches. Additionally, several simulations show physical behaviors found regard order. article’s results possess complimentary properties relate symmetry partial differential
منابع مشابه
Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملNumerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملNumerical Solution of Space-time Fractional two-dimensional Telegraph Equation by Shifted Legendre Operational Matrices
Fractional differential equations (FDEs) have attracted in the recent years a considerable interest due to their frequent appearance in various fields and their more accurate models of systems under consideration provided by fractional derivatives. For example, fractional derivatives have been used successfully to model frequency dependent damping behavior of many viscoelastic materials. They a...
متن کاملNumerical Solution of Fractional Telegraph Equation via the Tau Method
This paper presents a computational technique based on the Tau method and Legendre polynomials for the solution of a class of time-fractional telegraph equations. An appropriate representation of the solution via the Legendre operational matrix of fractional derivative is used to reduces its numerical treatment to the solution of a set of linear algebraic equations. The fractional derivatives a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2023
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym15030687